

Search enter your search

Home Best Sellers Textbooks Sell Textbooks Medical Supplies Apparel DVDs
Technology Clearance Books Coming Soon New Releases Office Supplies Art Supplies Bulk Sales

Search enter your search Advanced >> Related Topics: Science >> Nanostructures

Other versions by this Author

Nanostructures: Novel Architecture
Author(s): Diudea, Mircea V.; Balaban, Alexandru T.
(CON); Balaban, Teodor S. (CON); Braun, Tibor
(CON)
ISBN10: 1594544999
ISBN13: 9781594544996
Format: Hardcover
Pub. Date: 1/15/2006
Publisher(s): Nova Science Pub Inc

Table of Contents

New Price N/A
List Price $98.00
eVIP Price $87.52
New Copy: Currently Not Available

Used Price N/A
List Price $98.00
eVIP Price N/A

Marketplace Price $77.00
List Price $98.00

Table Of Contents

Preface vii

A Simplistic Approach of Revealing the Coming of Age of Nanoscience 1 (8)
Tibor Braun
Ildiko Diospatonyi

Fullerene Peapods and Related Nanomaterials: Synthesis, Structure, and Electronic Properties 9 (16)
Viktoria V. Ivanovskaya
Yurii N. Makurin
Aleksander L. Ivanovskii

Reaction Pathways in the Coalescence of Fullerenes 25 (36)
Csaba L. Nagy
Mircea V. Diude
Teodor S. Balaban

Periodic Finite Nanostructures 61 (24)
Mircea V. Diudea
Csaba L. Nagy
Ante Graovac

Theoretical Investigations of Single-Wall Nanocones 85 (26)
Alexandru T. Balaban

Polyhex Tori Originating In Square Tiled Tori 111(16)
Mircea V. Diudea

Distance Counting in Tubes and Tori: Wiener Index and Hosoya Polynomial 127(40)
Monica Stefu
Mircea V. Diudea

Counting Kekule Numbers In Torenes A Conjecture 167(8)
Peter E. John
Mircea V. Diudea

Fully-Resonant-Azulenoid Networks: Some Aspects of Construction And Taxonomy 175(18)
Edward. C. Kirby

Topological Coordinates for Schlegel Diagrams of Fullerenes and other Planar Graphs 193(10)
Istvan Laszlo

Covering Nanostructures 203(40)
Mircea V. Diudea

Algorithms for Basic Operations on Maps 243(26)
Monica Stefu
Daniela Butyka
Mircea V. Diudea
Lorentz Jantschi
Bazil Parv

Zeolite-Like Possible Carbon and Boron Nitride Allotropes 269(30)
R. Bruce King

The Symmetry of the Dyck Graph: Group Structure and Molecular Realization 299(12)
Erwin Lijnen
Arnout Ceulemans

Nanoporous Carbon Structures 311(24)
Csaba L. Nagy
Mircea V. Diudea

Cubanoid Amphiphiles as Building Blocks for the Development of Functional Nanostructured Materials 335(10)
Fabio Pichierri

Construction of Self-Assembled Nanostructures by Means of Dihydrogen Bonding 345(16)
Mircea Vlassa
Radu Custelcean
James E. Jackson

Nanosized Inorganic Metal-Oxygen Clusters 1. Basic Structures 361(38)
Adrian Patrut

 My Account | Help Desk | Market Place | Shopping Cart

Free Shipping. $49 or more. Details here!

No items in cart.
Total: $0.00

Check Out These Items!
eCampus.com 512MB USB
Drive
Retail Price $26.95
Our Price $20.00

eCampus.com Pink Backpack
Retail Price $28.95
Our Price $10.00

eCampus.com T-Shirt
Retail Price $14.99
Our Price $2.00

Nanostructures: Novel Architecture:1594544999:Diudea, Mircea V.; Balaban, Alexandru T. (CON); Balaban, Teodor S. (CON); B...

3/15/2007http://www.ecampus.com/book/1594544999

Nanosized Inorganic Metal-Oxygen Clusters 2. Special Structures 399(16)
Adrian Patrut
Adrian Nicoara

Index 415

Customer Support
 Check your Order Status
 Contact Us
 Visit our Help Desk
 Marketplace Info

Site Features
 The Marketplace
 F.A.S.T.

Shipping & Returns
 See our Shipping Rates
 See our Return Policy

Legal
 Privacy Policy
 Legal Notices
 Site Security

Business Affiliates
 Advertise With Us
 Affiliate Program
 Bulk Orders
 Business Accounts
 College Marketing

Buy New & Used Textbooks | Sell your Used Textbooks | Get your School Supplies| Employment

Need Help? eService@ecampus.com Copyright © 1999-2007

Nanostructures: Novel Architecture:1594544999:Diudea, Mircea V.; Balaban, Alexandru T. (CON); Balaban, Teodor S. (CON); B...

3/15/2007http://www.ecampus.com/book/1594544999

 Top » Catalog My Account | Cart Contents | Checkout

Quick Find

Use keywords to find the

product you are looking for.
Advanced Search

What's New?

Conformation of
Macromolecules:

Thermodynamic and Kinetic
Demonstrations

$130.50

Shopping Cart

1 x Nanostructures: Novel
Architecture

$88.20

Information

Shipping & Returns
Privacy Notice
Conditions of Use
Contact Us

Bestsellers

01. Grace Coolidge: Sudden Star
02. School Improvement:

International Perspectives
03. Texas Bluebonnet: Lady Bird

Johnson
04. Gene Silencing: New

Research
05. Enough! The Rose

Revolution in the Republic of
Georgia

06. Victim Vulnerability: An
Existential-Humanistic
Interpretation of a Single
Case Study

07. Possible Selves: Theory,
Research and Applications

08. Kynurenines in the Brain:
From Experiments to Clinics

09. Vocational Education: Current
Issues and Prospects

10. D-Amino Acids: A New
Frontier in Amino Acid and
Protein Research - Practical
Methods and Protocols

Contact Information

Online Contact Form

Nova Science Publishers, Inc
400 Oser Ave.

Suite 1600
Hauppauge NY

11788-3619

Phone: (631)231-7269
Fax: (631)231-8175

Email: Novascience@earthlink.net

Most Requested Books

01. Embryonic Stem Cell
Research

02. Arctic National Wildlife
Refuge

03. The USA Patriot Act
04. The Emergence of Crack

Cocaine Abuse
05. Focus on Breast Cancer

Research
06. Focus on Stem Cell Research
07. Individuals with Disabilities

Education Act (IDEA):
Background and Issues

08. Sexuality Counseling
09. Measuring Emotional

Intelligence: Common Ground
and Controversy

10. Women and Stress

 Thursday 15 March, 2007

Nova Science Publishers
© Copyright 2004 - 2007

Nova Science Publishers - The Latest Ebooks, Hardcovers and Softcovers1 Page 1 of 1

3/15/2007https://www.novapublishers.com/catalog/index.php?page=help

ALGORITHMS FOR BASIC OPERATIONS ON MAPS

Monica Ştefu,a* Daniela Butyka,a Mircea V. Diudea,a Lorentz Jäntschib and Bazil Pârvc

aFaculty of Chemistry and Chemical Engineering

“Babeş-Bolyai” University, 400084, Cluj, Romania
bTechnical University, Cluj, Romania

cDepartment of Computer Science, Faculty of Mathematics and Computer Science

“Babeş-Bolyai” University, 400084, Cluj, Romania

*e-mail: mstefu02@yahoo.com

Abstract. Covering operations in nanostructure modeling are presented as

algorithms implemented in the original software program CageVersatile 1.1. The

basic operations described are: Dual, Medial, Stellation, Truncation, Leapfrog,

Quadruple and Capra. Output file objects are illustrated.

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 310

1. Introduction

Covering a local planar surface by various polygonal or curved regions is

nowadays a mathematically founded science.1 The Geometry of (regular) polygons and

polyhedra, Graph Theory and Set Theory concertate in the ground statement of an

interdisciplinary science, often inspired from the Arts and Architecture, and implemented

in Computer Science.

Covering transformation is one of the ways in understanding chemical reactions

occurring in nanostructures.2-4

A map M is a combinatorial representation of a closed surface.5,6 Several

transformations (i.e., operations) on maps are known and used for various purposes.

Recall some basic relations in a map:

∑ = evd d 2 (1)

∑ = efs s 2 (2)

where vd and fs are the number of vertices of degree d and number of s-gonal faces,

respectively. The two relations are joined in the famous Euler formula:

)1(2)(gMfev −==+− χ (3)

with χ being the Euler characteristic and g the genus7 of a graph (i.e., the number of

handles attached to the sphere to make it homeomorphic to the surface on which the given

graph is embedded; g = 0 for a planar graph and 1 for a toroidal graph). Positive/negative

χ values indicate positive/negative curvature of a lattice.

The above relations, along with some rules for checking the connectivity and cycle

and/or polyhedral face identification were kept in mind when the CageVersatile CV1.1

software program was written.

Nanostructures - Novel Architecture

 311

2. Input, Output, and Helper Functions

The molecules are considered from the Graph Theory point of view, with atoms

as vertices and bonds between atoms as edges. The map operations, theoretically founded

in ref. 8, are presented in the order: Dual, Medial, Stellation, Truncation, Leapfrog,

Quadruple and Capra. Within these operations, new vertices are put and linked, by the

map operations rules, while the old vertices and edges are, in general, removed. For

details see ref. 5.

The program, written in the PHP (Pre Hypertext Processed) programming

language, has as input a .hin (Hyperchem) file and writes the results as output .txt and/or

.hin files. It can be executed online at the internet address

http://193.226.7.140/~monica/graph/cv1.1/

2.1. Input Data

In the first part of the program, the .hin file is tacken into array a. Then, the cycles

with chosen maximal size are searched; the distinct faces are put into the array c. The

basic condition is: an edge is shared to maximum two cycles/rings/faces.

The a array contains the list of vertices of the (initial) molecular graph hydrogen

depleted. The element a[i] (i=1,n; n is the number of vertices in the initial molecular

graph) is an array containing the coordinates, valence and the vertices linked to the vertex

i.

In the array c, c[i,0] is the number of faces contained in the vector c[i], which

begins at the vertex i; nv = c[i,j,0] is the number of vertices of the face c[i,j], while c[i,j,1]

... c[i,j,nv] is the list of vertices of the face c[i,j].

The m array stores the list of edges of the initial molecular graph and some

additional new vertices, used within operations. It has a structure similar to the array c;

m[i,j] represents an edge with the endpoints in m[i,j,1] and m[i,j2]. In some cases, m[i,j,3]

.. m[i,j,6] are used to memorize new vertices in connection with the edge m[i,j].

The algorithms given below are based on the arrays a, c and m, derived from the

input .hin file.

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 312

2.2. Output Files

All basic operations on maps described here provide .hin files as the output. The

general procedure for generating an output file is: (1) generate an operation-specific

array, (2) concatenate the array elements in a string and (3) write the resulted strings in

the .hin format file.

The operation-specific arrays have the same structure for all operations. For

example, in the MEDIAL operation, the operation-specific array med has for every atom/

vertex i an element med[i] with the .hin file structure:

med[i,1] = "atom ".i." - ".tipa." CA - 0 ".x." ".y." ".z." ";

where i is the atom number, tipa is the atom type and x, y, z are the coordinates;

med[i,2] contains the atom valence (denoted by v);

med[i,3] ... med[i,v+2] contain the atoms adjacent to atom i.

Before producing the content of the .hin file, a header must also be provided for

compatibility with the Hyperchem program. This header has the general form:

;OpName + newLine + "forcefield mm+" + newLine + "sys 0" + texti + "mol 1"

+ newLine

where + means string concatenation, OpName is the name of the operation, hard-coded in

every basic map operation, newLine is the line terminator, while texti is an explanatory

text to be included in the header; mol1 marks the beginning of the first molecular graph.

2.3. Helper Operations

This section presents the helper functions, invoked in the basic map operations as

follows:

• for Dual: Center, OnSphere, Much_D, ad2l, WriteF
• for Medial: AdMe, ad2l, WriteF
• for Stellation: Center_D, Ini, WriteF
• for Truncation: Ad_CoordT, Ad_P, AdTr, WriteF
• for LeapFrog: Ad_Coord, Center_D, P_New, ad2l, Much_D, WriteF
• for Quadruple: IniQ, AdCycleInt, AdCoordQ, AdLegQ, MeanQ, WriteF
• for Capra: AdPi, Center_D, Ad_P_Middle, AdLeg_C, P_New_Capra,

AlreadyVisited, Nrc, Verif_M2, Verif_M, Inv_56, WriteF.

Nanostructures - Novel Architecture

 313

Function Grow increases the values of coordinates of the initial molecular graph by

the factor mar = 2 to 6 times. It is used before the calling of the procedures for the

operations.
function Grow(a, mar){
// in-out:
// a: graph vertices array
// in:
// mar: increasing factor
// purpose: increases the coordinates
 n := count(a); //number of vertices
 for i := 1 to n
 a[i,2]:= a[i,2]*mar;
 a[i,3]:= a[i,3]*mar;
 a[i,4]:= a[i,4]*mar;
 endfor i
end function Grow

Function Center computes the center of the molecular graph defined by the
coordinates (xc, yc, zc) and the radius r of the sphere.

function Center(n, a, xc, yc, zc, r)
// in: n, a
// out: xc, yc, zc, r
// purpose: computes the center of the molecular graph by the coordinates
// xc,yc, zc and the radius of the sphere.
 // the center coordinates, as arithmetic mean
 // the sphere radius is the arithmetic mean of the distances
 // between the center and the vertices.
 xc := 0; yc := 0; zc := 0;
 n := count(a); //number of vertices
 for i := 1 to n
 xc := xc + a[i,2];
 yc := yc + a[i,3];
 zc := zc + a[i,4];
 endfor i
 xc := xc/n; yc := yc/n; zc := zc/n;
 r := 0;
 for i := 1 to n
 r := r + sqrt((xc-a[i,2])^2 + (yc-a[i,3])^2 +(zc-a[i,4])^2);
 endfor i
 r := r/n;
end function Center

Function OnSphere returns the adapted coordinates (x, y, z) for the new vertices
lying on a sphere with the center of coordinates xc, yc, zc and radius r.

function OnSphere(xc, yc, zc, r, x, y, z)
// in: xc, yc, zc, r
// in-out: x, y, z
// purpose: computes the adapted coordinates for a vertex lying on a
// sphere of center (xc, yc, zc) and radius r.
 // rp is the distance between the old vertex and the sphere center.
 rp := sqrt((xc-x)^2 + (yc-y)^2 + (zc-z)^2);
 x := x*r/rp; y := y*r/rp; z := z*r/rp;

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 314

end function OnSphere

Function Much_D visits all the edges and puts the new vertex v on a side of the
edge (m1,m2), in the array elements m[i,j,5] or m[i,j,6]. The function is used in the
Dual and the Leapfrog operations.

function Much_D(v, m1, m2, n, m)
// in: v, n, m1, m2
// in-out: m
// purpose: puts the new vertex v on a side of the edge (m1, m2).
 for i := 1 to n
 for j := 1 to m[i,0]
 if ((m[i,j,1] = m1) and m[i,j,2] = m2)) or
 ((m[i,j,2] = m1) and m[i,j,1] = m2)) then
 if m[i,j,5] = 0 then {
 m[i,j,5] := v;
 m[i,j,6] := 0; }
 else
 m[i,j,6] := v;
 endif
 endfor j
 endfor i
end function Much_D

The function AdLeg puts the link (from, to) in the array med and concatenates
the corresponding strings.

function AdLeg(from, to, med)
// in: from, to
// in-out: med
// purpose: puts in the array med the link from 'from' to 'to' vertices.
 med[from, 2] := med[from, 2] + 1;
 loc := med[from, 2];
 med[from, loc+2] := to & " a";
end function AdLeg

The function ad2l links in both directions the vertices l1 and l2.

function ad2l(l1,l2,med)
// in: l1, l2
// in-out: med
// purpose: links the given vertices in both directions
 adleg(l1,l2,med);
 adleg(l2,l1,med);
end function ad2l

The function AdMe links the vertices lying in the middle of the edges (m1, m2) and
(m2, m3). It is invoked in the Medial operation.

function AdMe(m1, m2, m3, n, m, med)
// in: m1, m2, m3, n, m
// in-out: med
// purpose: links the vertices stored in the m[k,kk,5] array elements of
// the edges (m1, m2) and (m2, m3).
 for k := 1 to n
 for kk := 1 to m[k,0]
 if ((m1 = m[k,kk,1]) and (m2 = m[k,kk,2])) or
 ((m1 = m[k,kk,2]) and (m2 = m[k,kk,1]))

Nanostructures - Novel Architecture

 315

 leg1 := m[k,kk,5];
 if ((m2 = m[k,kk,1]) and (m3 = m[k,kk,2])) or
 ((m2 = m[k,kk,2]) and (m3 = m[k,kk,1]))
 leg2 := m[k,kk,5];
 endfor kk
 ad2l(leg1, leg2, med); // links vertices leg1 and leg2
 endfor k // in both directions.
end function AdMe

Function Center_D returns the coordinates x, y, z of the new vertex nn, the
center of the face c[i,j]. The function is called in the Leapfrog and Capra operations.

function Center_D(i, j, nn, a, tipa, x, y, z, c, st)
// in: i, j, a, tipa
// out: x, y, z
// in-out: nn, c, st
// purpose: computes the coordinates of the new vertex which is the
// center of the face c[i,j] and stores the new vertex in
// c[i,j,c[i,j,0]+1].
 x := 0; y := 0; z := 0;
 nn := nn + 1;
 st[nn,1] := "atom " + nn + " - " + tipa + " CA - 0 ";
 for k := 1 to c[i, j, 0]
 x := x + a[c[i,j,k]],2]; // the coordinates of the center of the
 y := y + a[c[i,j,k]],3]; // face c[i,j] is the average of the
 z := z + a[c[i,j,k]],4]; // coordinates of the boundary vertices.
 endfor k
 x := x/c[i,j,0]; y := y/c[i,j,0]; z := z/c[i,j,0];
 st[nn,1] := st[nn, 1] + x + " " + y + " " + z + " ";
 c[i,j,c[i,j,0]+1] := nn;
end function Center_D

Function Ini concatenates the information about valences, old coordinates and old
adjacent vertices to the string st, in order to preserve the old vertices in the output file. It
is called in the Stellation operation.

function Ini(a, n, tipa, st)
// in: a, n, tipa
// in-out: st
// purpose: updates the string st with the valences, old coordinates and
// old adjacent vertices info.
 for i := 1 to n
 st[i, 2] := a[i,8]; // old valence
 // old coords
 st[i, 1] := "atom " + i + " - " + tipa + " CA - 0 " +
 a[i, 2] + " " + a[i, 3] + " " + a[i, 4] + " ";
 k := 0;
 for j := 9 to a[i,8]*2 + 8 step 2
 k := k + 1; // old adjacent vertices of the vertex i
 st[i, k+2] := a[i,j] + " a";
 endfor j
 endfor i
end function Ini

Function Ad_CoordT computes the coordinates (x, y, z) of a new vertex lying on
the edge m[i,j] and puts the new vertex with the valency 0 in the final array tr. The

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 316

parameter k is either 2 or 0.5, defining the position of the new vertex with respect to the
ends of the edge. This function is used in the Truncation and the Capra operations.

function Ad_CoordT(m, i, j, k, x, y, z, nn, tr, tipa, a)
// in: m, i, j, k, tipa, a
// out: x, y, z
// in-out: nn, tr
// purpose: computes the coordinates (x,y,z) of a new vertex lying on the
// edge m[i,j]. There are two new vertices trisecting the edge.
// The parameter k defines the position of the new vertex with
// respect to the edge bounds. Valid values are 2 or 0.5.
 nn := nn + 1; // the number of vertices in the new graph
 tr[nn,2] := 0;
 tr[nn,1] := "atom " + nn + " - " + tipa + " CA - 0 ";
 x := (a[m[i,j,1],2] + k * a[m[i,j,2],2])/(1+k);
 y := (a[m[i,j,1],3] + k * a[m[i,j,2],3])/(1+k);
 z := (a[m[i,j,1],4] + k * a[m[i,j,2],4])/(1+k);
 tr[nn,1] := tr[nn,1] + x + " " + y + " " + z + " ";
end function Ad_CoordT

Function Ad_P puts two new vertices on the edge m[i,j] by calling Ad_CoordT
twice with k = 2 and k = 0.5, and stores them in m[i,j,5] and m[i,j,6]. Both Ad_P
and AdTr functions are invoked in the Truncation operation.

function Ad_P(tr, m, i, j, nn, tipa, a)
// in: i, j, tipa, a
// in-out: tr, m, nn
// purpose: puts two new vertices on the edge m[i,j] by calling Ad_CoordT
 Ad_CoordT(m,i,j,2,x,y,z,nn,tr,tipa,a); // the vertex closer to m[i,j,2]
 m[i,j,5] := nn;
 Ad_CoordT(m,i,j,0.5,x,y,z,nn,tr,tipa,a)// the vertex closer to m[i,j,1]
 m[i,j,6] := nn;
 ad2l(nn-1,nn,tr); // links the new vertices related to the old edge
end function Ad_P // m[i,j], in the final array tr.

Function AdTr adds a link between the two new vertices located on the edges (m1,
m2) and (m2, m3), nearer to the vertex m2.

function AdTr(m1, m2, m3, n, m, tr)
// in: m1, m2, m3, n, m
// in-out: tr
// purpose: links the two new vertices located on the edges (m1, m2) and
// (m2, m3), that is closer to the vertex m2.
 for k := 1 to n
 for kk := 1 to m[k,0]
 if ((m1 = m[k,kk,1]) and (m2 = m[k,kk,2])) leg1 := m[k,kk,5];
 if ((m1 = m[k,kk,2]) and (m2 = m[k,kk,1])) leg1 := m[k,kk,6];
 if ((m2 = m[k,kk,1]) and (m3 = m[k,kk,2])) leg2 := m[k,kk,6];
 if ((m2 = m[k,kk,2]) and (m3 = m[k,kk,1])) leg2 := m[k,kk,5];
 endfor kk
 ad2l(leg1, leg2, tr); // links the vertices leg1 and leg2
 endfor k // in both directions.
end function AdTr

Nanostructures - Novel Architecture

 317

The function Ad_Coord sums up the coordinates of the vertex vc in the
corresponding sum variables x, y, and z. The function is called by the P_New function.

function Ad_Coord(x, y, z, vc, a)
// in: vc, a
// in-out: x, y, z
// purpose: sums the coordinates of a[vc] into x, y, and z.
 x := x + a[vc,2];
 y := y + a[vc,3];
 z := z + a[vc,4];
end function Ad_Coord

Function P_New puts a new vertex inside the face c[i,j], in the final array leaf,
near the edge (c[i,j,k], c[i,j,kk]). It is used in the Leapfrog and Capra operations.

function P_New(i, j, k, kk, a, c, tipa, xf, yf, zf, nn, leaf, c2)
// in: i, j, k, kk, a, c, tipa, xf, yf, zf,
// in-out: nn, leaf, c2
// purpose: adds a new vertex inside the face c[i,j] in the array leaf,
// near the edge (c[i,j,k], c[i,j,kk]).
// (xf, yf, zf) define the center of the face c[i,j].
 nn := nn + 1; // new vertex
 leaf[nn, 1] := "atom " + nn + " - " + tipa + " CA - 0 ";
 x := 0; y := 0; z := 0;
 Ad_Coord(x, y, z, c[i,j,k], a);
 Ad_Coord(x, y, z, c[i,j,kk], a);
 x = (x + xf)/3; // Computes the coordinates x,y and z as the mean of
 y = (y + yf)/3; // the coordinates of the two ends of the edge
 z = (z + zf)/3; // (c[i,j,k), c[i,j,kk)) and the face center.
 leaf[nn,1] := leaf[nn,1] + x + " " + y + " " + z + " ";
 c2[i,j,k] := nn;
 leaf[nn,2] := 0;
end function P_New

Function IniQ puts the coordinates of old vertices into the qa string. It is invoked
in the Quadrupling and Capra operations.

function IniQ(a, n, tipa, qa)
// in: a, n, tipa
// in-out: qa
// purpose: initializes the array qa with the old vertices.
 for i := 1 to n
 qa[i,1] := "atom " + i + " - " + tipa + " CA - 0 ";
 qa[i,1] := qa[i,1] + a[i,2] + " " + a[i,3] + " " + a[i,4] + " ";
 qa[i,2] := 0;
 endfor i
end function IniQ

Function WriteF writes the final version of the array qa to the output file referred
by the file pointer fp.

function WriteF(fp, n, qa)
// in: fp, n, qa
// purpose: writes the array qa to the text file referred by fp.
 for i := 1 to n // + means string concatenation.
 print fp, qa[i,1] + qa[i,2]; // writes the coordinates and
 for j := 1 to qa[i,2] // valence of the vertex i.

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 318

 print fp, " " + qa[i,j+2]; // Writes the linked vertices.
 endfor j
 print fp, newLine; // Writes the line terminator(s).
 endfor i
 print fp, "endmol 1";
end function WriteF

Function MeanQ returns the coordinates of the new vertex corresponding to p2 as
the weighted average of three consecutive vertices p1, p2 and p3 in the final string strc.
This function is used in the AdCoordQ function.

function MeanQ(a, p1, p2, p3, strc)
// in: a, p1, p2, p3
// out: strc
// purpose: computes the coordinates of a new vertex as weighted average
// of the coordinates of vertices p1, p2, p3 and returns them
// in the string strc.
 x := (a[p1,2] + a[p2,2]*2 + a[p3,2])/4;
 y := (a[p1,3] + a[p2,3]*2 + a[p3,3])/4;
 z := (a[p1,4] + a[p2,4]*2 + a[p3,4])/4;
 strc := x + " " + y + " " + z + " ";
end function MeanQ

Function AdCoordQ puts the vertex coordinates of the new cycle inside the old
cycle c[i,j]. AdCoordQ and AdLegQ functions are called by the AdCycleInt function, in
the Quadrupling operation. They update the final string qa.

function AdCoordQ(a, c, no, i, j, qa)
// in: a, c, no, i, j
// in-out: qa
// purpose: puts the coordinates of the new cycle inside the old cycle
// c[i,j].
 lc := c[i,j,0];
 n := no - lc;
 MeanQ(a, c[i,j,lc], c[i,j,1], c[i,j,2], strc);
 qa[n+1,1] := qa[n+1,1] + strc; // the coords of the first vertex
 MeanQ(a, c[i,j,lc-1], c[i,j,lc], c[i,j,1], strc);
 qa[no,1] := qa[no,1] + strc; // the coords of the last vertex
 for k := 2 to c[i,j,0]-1
 MeanQ(a, c[i,j,k-1], c[i,j,k], c[i,j,k+1], strc);
 qa[n+k,1] := qa[n+1,1] + strc; // the coords of the other vertices
 endfor k
end function AdCoordQ

Function AdLegQ adds the edges of the new cycle located inside the old cycle
c[i,j].

function AdLegQ(a, c, no, i, j, qa)
// in: a, c, no, i, j
// in-out: qa
// purpose: adds the edges of the new cycle located inside the old
// cycle c[i,j].
 lc := c[i,j,0]; // the size of the cycle
 p1 := no - lc + 1; // the first vertex in the cycle
 // Adds the links between the vertices of the new cycle.
 ad2l(p1, no, qa);

Nanostructures - Novel Architecture

 319

 for k := 1 to c[i,j,0]-1
 ad2l(p1+k-1, p1+k, qa);
 endfor k
 // Adds the links between the vertices of the new cycle and the
 // corresponding vertices of the old cycle.
 for k := 1 to c[i,j,0]
 Ad2l(p1+k-1, c[i,j,k], qa);
 endfor k
end function AdLegQ

Function AdCycleInt adds a similar inner cycle for every old cycle and puts the
edges for the new cycle between the new and corresponding old vertices. It implements
an important step in the Quadrupling operation.

function AdCycleInt(a, n, c, tipa, qa, no)
// in: a, n, c, tipa
// out: no
// in-out: qa
// purpose: adds a similar inner cycle for every old cycle and updates
 the links between the new and the corresponding old vertices.
 no := n; // The old vertices are kept.
 for i := 1 to n
 for j := 1 to c[i,0] // for every cycle c[i,j]
 for k := 1 to c[i,j,0] // for every vertex c[i,j,k] of the cycle
 no := no + 1; // a new vertex to be added
 qa[no, 1] := "atom " + no + " - " + tipa + " CA - 0 ";
 qa[no, 2] := 0;
 endfor k
 AdCoordQ(a, c, no, i, j, qa);
 AdLegQ(a, c, no, i, j, qa);
 endfor j
 endfor i
end function AdCycleInt

Function P_New_Capra puts a new vertex inside the face c[i,j], in the array leaf,
close to the edge (c[i,j,k], c[i,j,kk]). Unlike the function P_New, the new vertex
will be selected. This function is called by the Ad_P_Middle function, described below.

function P_New_Capra(i, j, k, kk, a, c, tipa, xf, yf, zf, nn, cip, c2)
// in: i, j, k, kk, a, c, tipa, xf, yf, zf
// in-out: nn, cip, c2
// purpose: adds a new vertex inside the face c[i,j] in the array cip,
// close to the edge (c[i,j,k], c[i,j,kk]).
// (xf, yf, zf) define the center of the face c[i,j]
 P_New(i, j, k, kk, a, c, tipa, xf, yf, zf, nn, cip, c2);
 // the vertices within the new cycle are marked by 's'.
 cip[nn,1] := replace("CA - 0", "CA s 0", cip[nn,1]); // string repl.
end function P_New_Capra

Function Ad_P_Middle adds a new cycle, of the same folding, in the center of old
cycle c[i,j]. This function is used by the Capra operation.

function Ad_P_Middle(cip, m, i, j, nn, c, x, y, z, a, tipa, c2)
// in: m, i, j, x, y, z, a, tipa
// in-out: cip, nn, c, c2
// purpose: adds a new cycle in the center of the old cycle c[i,j].

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 320

 nn := nn - 1; // Removes the vertex from the center.
 nv = c[i,j,0];
 c[i,j,nv+2] := "x"; // Marks the visited cycle.
 // Adds the vertices of the new cycle inside the old cycle.
 for k := 1 to nv-1
 P_New_Capra(i, j, k, k+1, a, c, tipa, x, y, z, nn, cip, c2);
 endfor k
 P_New_Capra(i, j, nv, 1, a, c, tipa, x, y, z, nn, cip, c2);
 // Adds edges of the new cycle.
 for k := 1 to nv-1
 Ad2l(c2[i,j,k], c2[i,j,k+1], cip);
 endfor k
 Ad2l(c2[i,j,1], c2[i,j,nv], cip);
end function Ad_P_Middle

All the functions described below in this section are invoked by the Capra
operation. The function Inv56 returns the value 5 if receives the value 6, and 6 otherwise.

function Inv56(i)
// in: i
// purpose: if the argument has the value 6, returns 5;
// otherwise returns 6.
 if i = 6
 then return 5
 else return 6
 endif
end function Inv56

 The function Verif_M2 returns the position (of the added points on the edges) put
by the last link.

function Verif_M2(m, i, j, c)
// in: m, i, j, c
// purpose: returns the position of vertex put by the last link
// if no link is found, returns 0.
 for k := 1 to c[i,j,0] // Verifies if the links exist
 ii := c[i,j,k]; // from the central cycle at the first or
 if k < c[i,j,0] // second vertex on the old edge.
 then iiu := c[i,j,k+1];
 else iiu := c[i,j,1];
 endif
 for jj := 1 to m[ii,0]
 if m[ii,jj,2] = iiu then // for the edge ii, iiu
 if m[ii,jj,7] > 0 then // If the link was found
 // returns the position of the last link on the edge m[ii,jj].
 return m[ii,jj,7];
 endif
 endfor jj
 for jj := 1 to m[iiu, 0]
 if m[iiu,jj,2] = ii then // for the edge iiu, ii
 if m[iiu,jj,7] > 0 then // If the link was found
 // returns the position of the last link on the edge m[ii,jj].
 return Inv56(m[iiu,jj,7]);
 endif
 endfor jj
 endfor k
 return 0;

Nanostructures - Novel Architecture

 321

end function Verif_M2

 Function Verif_M puts a link between the central cycle and a new vertex on the
edges.

function Verif_M(cip, m, ii, iiu, m56, pc)
// in: ii, iiu, m56, pc
// in-out: cip, m
// purpose: puts the link from the vertex pc of the central cycle to
// a vertex from the edge ii - iiu, in the final array cip.
 for jj := 1 to m[ii, 0]
 if m[ii,jj,2] = iiu then // for the edge ii, iiu
 ad2l(m[ii,jj,m56], pc, cip); // links the vertices
 m[ii,jj,7] := m56;
 endif
 endfor jj
end function Verif_M

Function AlreadyVisited checks if the cycle was already visited or it shares an
edge with a visited cycle.

function AlreadyVisited(c, i, j, m)
// in: c, i, j, m
// purpose: returns true (0) if
// a) the cycle was already visited
// b) the cycle shares an edge with an already visited cycle.
 nv = c[i,j,0];
 if c[i,j,nv+2] = "x" then return true; // The cycle was visited.
 if Verif_M2(m, i, j, c) = 0 then return true;
 return false;
end function AlreadyVisited

 The function Nrc counts the number of cycles.

function Nrc(c, n, nci)
// in: c, n
// out: nci
// purpose: returns the number of cycles.
 nci := 0;
 for i := 1 to n
 for j := 1 to c[i,0]
 nci := nci + 1;
 endfor j
 endfor i
end function Nrc

Function AdLeg_C adds edges connecting the vertices of the new cycle lying in the
center of the old cycle, to the old cycle, c[i,j].

function AdLeg_C(cip, m, i, j, nn, c, c2, n, p12)
// in: i, j, nn, c2, n, p12
// in-out: cip, m, c
// purpose: puts the links between the central cycle and the points added
// on the edges of the old cycle c[i,j].
 nv := c[i,j,0];

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 322

 poz1 := Verif_M2(m, i, j, c);
// the position of the last link on the edges
 if poz1 = 0 then poz1 := 4 + p12;
 poz2 := inv56(poz1);
 for k := 1 to c[i,j,0] // for every vertex c[i,j,k] from c[i,j]
 ii := c[i,j,k];
 if k < c[i,j,0]
 then iiu := c[i,j,k+1]
 else iiu := c[i,j,1]
 endif
 Verif_M(cip, m, ii, iiu, poz2, c2[i,j,k)); // Puts a link to the new
 Verif_M(cip, m, iiu, ii, poz1, c2[i,j,k)); // vertex added on the old
 endfor k // edge ii, iiu.
end function AdLeg_C

The function Ad_Pi adds two vertices on each link and then links to each other
and to the ends of the edge.

function Ad_Pi(cip, m, i, j, nn, tipa, a)
// in: i, j, tipa, a
// in-out: cip, m, nn
// purpose: adds two vertices on each link and then links them with
// the ends of the edge.
 Ad_CoordT(m, i, j, 2, x, y, z, nn, cip, tipa, a);
 ad2l(m[i,j,2], nn, cip);
 m[i,j,6] := nn;
 Ad_CoordT(m, i, j, 0.5, x, y, z, nn, cip, tipa, a);
 m[i,j,5] := nn;
 // Links the new vertices to each other.
 ad2l(nn-1, nn, cip);
 // Links the new vertices with the ends of the edge.
 ad2l(m[i,j,1], nn, cip);
end function Ad_Pi

3. Basic Map Operations

3.1. Dual

Function Dual operates all the faces of the array c by putting a new point in the

center of each face. Every two such points are then joined if their corresponding faces

share a common edge (Figure 1).

Nanostructures - Novel Architecture

 323

M Du(M)
Figure 1: Dual operation.

function Dual(a, n, c, fp, m, tipa, sfer, texti)
// in: a, n, c, fp, tipa, sfer, texti
// in-out: m
// purpose: puts a new point in the center of each face
// joins every two such new points if their corresponding faces
// share a common edge.
 // textd: the .hin file header
 // newLine is the line terminator.
 textd := "Dual " + newLine + "forcefield mm+" + newLine +
 "sys 0" + texti + "mol 1" + newLine;
 print fp, textd;
 Center(n, a, xc, yc, zc, r);
 nn := 0; // the number of initial faces = number of the new vertices
 for i := 1 to n // Visits the faces to compute their center coords.
 for j := 1 to c[i,0];
 nn := nn + 1;
 du[nn,2] := 0; // Initializes the valences.
 du[nn,1] := "atom " + nn + " - " + tipa + " CA - 0 ";
 x := 0; y := 0; z := 0;
 for k := 1 to c[i,j,0]
 x := x + a[c[i,j,k],2]; // Coordinates x, y, z of the center
 y := y + a[c[i,j,k],3]; // of the face c[i,j]
 z := z + a[c[i,j,k],4]; // are averages of vertex coords.
 endfor k
 x := x / c[i,j,0]; y := y / c[i,j,0]; z := z / c]i,j,0];
 if sfer then // if the new vertices lye on the sphere
 OnSphere(xc, yc, zc, r, x, y, z);
 endif
 du[nn,1] := du[nn,1] + x + " " + y + " " + z + " ";
 c[i,j, c[i,j,0]+1] := nn; // the new vertex for the face c[i,j]
 endfor j
 endfor i
 // adds the links in the new graph
 for i := 1 to n
 for j := 1 to m[i,0]
 m[i,j,5] := 0;
 endfor j
 endfor i
 for i := 1 to n
 for j := 1 to c[i,0]
 v := c[i,j,c[i,j,0]+1];
 for k := 1 to c[i,j,0] - 1

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 324

 m1 := c[i,j,k];
 m2 := c[i,j,k+1];
 Much_D(v, m1, m2, n, m); // Puts the new vertex v in the array m.
 endfor k
 Much_D(v, c[i,j,1], c[i,j,c[i,j,0]], n, m);
 endfor j
 endfor i
 for i := 1 to n
 for j := 1 to m[i,0] // Visits the edges and links the
 if m[i,j,6] > 0 then // vertices across the shared edge.
 ad2l(m[i,j,5], m[i,j,6], du);
 endif
 endfor j
 endfor i
 // Write the strings from du in the output file.
 WriteF(fp, nn, du);
end function Dual

3.2. Medial

By this operation, a new vertex is put in the middle of every old edge and the new

vertices are linked if they belong to consecutive edges, within a rotational path around

their common vertex. Only the new vertices are retained. Optionally, the new vertices can

be embedded on the sphere.

In the medial transform, the number of vertices equals the number of edges in the

parent map. Function Medial visits the edges and puts a new vertex in the middle of

every edge. The local array med will contain the new structure/map.

E1(M) Me(M)
Figure 2: Medial operation

function Medial(n, a, c, m, fp, tipa, sfer, texti)
// in: n, a, c, fp, tipa, sfer, texti
// out: m
// purpose: puts a new point in the middle of every old edge
// the new vertices are linked if they belong to consecutive
// edges within a rotational path around their common vertex.
 // .hin file header

Nanostructures - Novel Architecture

 325

 // newLine is the line terminator.
 textm := "Medial " + newLine + "forcefield mm+" + newLine +
 "sys 0" + texti + "mol 1" + newLine;
 print fp, textm;
 Center(n, a, xc, yc, zc, r);
 nn := 0; // the number of resulting vertices
 for i := 1 to n
 for j := 1 to m[i,0] // For every edge
 nn := nn + 1; // adds a new vertex.
 med[nn,2] := 0;
 med[nn,1] := "atom " + nn + " - " + tipa + " CA - 0 ";
 // the coords of the edge middle
 x := (a[m[i,j,1],2] + a[m[i,j,2],2])/2;
 y := (a[m[i,j,1],3] + a[m[i,j,2],3])/2;
 z := (a[m[i,j,1],4] + a[m[i,j,2],4])/2;
 if sfer then // if the new points will lye on the sphere
 OnSphere(xc, yc, zc, r, x, y, z);
 endif
 med[nn,1] := med[nn,1] + x + " " + y + " " + z + " ";
 m[i,j,5] := nn;
 endfor j
 endfor i
 // Add the links to the other new vertices.
 for ii := 1 to n
 for jj := 1 to c[ii,0] // for each face
 for kk := 1 to c[ii,jj,0] - 2
 // Connects the new vertices located at every consecutive edges.
 // (m1, m2) and (m2, m3)
 m1 := c[ii, jj, kk];
 m2 := c[ii, jj, kk+1];
 m3 := c[ii, jj, kk+2];
 AdMe(m1, m2, m3, n, m, med);
 endfor kk
 // Connects the start and end vertices, closing the ring.
 AdMe(c[ii,jj,c[ii,jj,0]-1],c[ii,jj,c[ii,jj,0]],c[ii,jj,1],n,m,med);
 AdMe(c[ii,jj,c[ii,jj,0]],c[ii,jj,1],c[ii,jj,2],n,m,med);
 endfor jj
 endfor ii
 // Writes the strings from med in the output file.
 WriteF(fp, nn, med);
end function Medial

3.3. Stellation

This operation adds a new vertex in the center of every face and connect it with

the boundary vertices. The old vertices and edges are kept, and all the faces of the

resulting graph are triangles. Function Stellation builds the array st and writes it in the

output file.

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 326

M St(M)
Figure 3: Stellation operation

function Stellation(n, a, c, fp, m, tipa, texti)
// in: n, a, c, fp, tipa, texti
// in-out: m
// purpose: adds a new vertex in the center of every face
// and connects it with the boundary vertices. The old vertices
// and edges are kept.
 // .hin file header
 // newLine is the line terminator.
 texts := "Stellation " + newLine + "forcefield mm+" + newLine +
 "sys 0" + texti + "mol 1" + newLine;
 print fp, texts;
 Ini(a, n, tipa, st); // Puts the initial vertices and edges in st.
 nn := n; // nn stores the number of final vertices.
 for i := 1 to n
 for j := 1 to c[i,0] // Visits all parent faces;
 Center_D(i,j,nn,a,tipa,x,y,z,c,st); // the nn-th vertex is the
 st[nn,2] := 0; // center of the c[i,j] face.
 for k := 1 to c[i,j,0]
 ad2l(nn,c[i,j,k],st); // Joins all boundary vertices to the
 endfor k // center of the face.
 endfor j
 endfor i
 // Writes the strings from st in the output file.
 WriteF(fp, nn, st);
end function Stellation

3.4. Truncation

This operation puts a new vertex on each edge incident in an old vertex, and joins

them around the old vertex, which is finally cut off. In the function Truncation, the final

vertices are put in the local array tr, which is then written in the .hin file.

Nanostructures - Novel Architecture

 327

M E2(M) Tr(M)

. ..
...

.

Figure 4: Truncation operation

function Truncation (n, a, c, m, fp, tipa, texti)
// in: n, a, c, m, fp, tipa, texti
// purpose: adds a new vertex on each edge around an old vertex
// and connects them around the old vertex which is cut off;
// connects the two vertices on the same edge.
 // .hin file header
 // newLine is the line terminator.
 textt := "Truncation " + newLine + "forcefield mm+" + newLine +
 "sys 0" + texti + "mol 1" + newLine;
 print fp, textt;
 nn := 0; // the number of final vertices
 for i := 1 to n
 for j := 1 to m[i,0] // On each edge two vertices
 Ad_P(tr, m, i, j, nn, tipa, a); // are added and linked.
 endfor j
 endfor i
 for ii := 1 to n
 for jj := 1 to c[ii,0]
 for kk := 1 to c[ii,jj,0]-2 // for each cycle c[ii,jj]
 m1 := c[ii,jj,kk]; // Connects the new vertices
 m2 := c[ii,jj,kk+1]; // lying on the edges (m1,m2) and (m2,m3)
 m3 := c[ii,jj,kk+2]; // around the old vertex m2.
 AdTr(m1, m2, m3, n, m, tr);
 endfor kk
 AdTr(c[ii,jj,c[ii,jj,0]-1],c[ii,jj,c[ii,jj,0]],c[ii,jj,1],n,m,tr);
 AdTr(c[ii,jj,c[ii,jj,0]],c[ii,jj,1],c[ii,jj,2],n,m,tr);
 endfor jj
 endfor ii
 // Writes the strings from array tr in the output file.
 WriteF(fp, nn, tr);
end function Truncation

3.5. Leapfrog

This operation puts vertices on both sides of the old edges. Next, it links these

new vertices inside of each face if they correspond to consecutive edges and then links

every two vertices from different faces if they correspond to the same edge. Only the new

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 328

vertices and edges remain in the resulting graph. During the construction, the local array

leaf contains information about new vertices, which is written in the .hin file.

M Le(M)
Figure 5: Leapfrog operation.

function Leapfrog(a, n, c, fp, m, tipa, texti)
// in: a, n, c, fp, tipa, texti
// in-out: m
// purpose: puts vertices on both sides of the old edges;
// links the new vertices inside the faces if they correspond to
// consecutive edges and links every two vertices from different
// faces if they correspond to the same edge;
// only the new vertices remain.
 // .hin file header
 // newLine is the line terminator.
 textl := "Leap Frog " + newLine + "forcefield mm+" + newLine +
 "sys 0" + texti + "mol 1" + newLine;
 print fp, textl;
 nn := 0; // the number of new vertices
 nf := 0; // the number of new faces
 for i := 1 to n
 for j := 1 to c[i,0] // For every face c[i,j]
 // computes the coordinates (xf,yf,zf) of the face center.
 Center_D(i,j,nf,a,tipa,xf,yf,zf,c,st);
 nv := c[i,j,0]; // the number of vertices in the face c[i,j]
 v := c[i,j,nv+1];
 for k := 1 to nv-1
 // For each boundary edge, put in c2 a new vertex inside the face.
 P_New(i,j,k,k+1,a,c,tipa,xf,yf,zf,nn,leaf,c2);
 endfor k
 P_New(i,j,nv,1,a,c,tipa,xf,yf,zf,nn,leaf,c2);
 for k := 1 to nv-1
 ad2l(c2[i,j,k],c2[i,j,k+1],leaf); // Adds the links between the
 m1 := c[i,j,k]; // new vertices c2[i,j,k],
 m2 := c[i,j,k+1]; // c2[i,j,k+1] inside the
 Much_D(c2[i,j,k],m1,m2,n,m); // face c[i,j].
 endfor k
 ad2l(c2[i,j,1],c2[i,j,nv],leaf); // Links vertices at the end
 Much_D(c2[i,j,nv],c[i,j,1],c[i,j,nv],n,m); // of the cycle c[i,j].
 endfor j
 endfor i
 for i := 1 to n
 for j := 1 to m[i,0]

Nanostructures - Novel Architecture

 329

 if m[i,j,6] > 0 then
 ad2l(m[i,j,5],m[i,j,6], leaf);
 endif
 endfor j
 endfor i
// Writes the strings from leaf in the output file.
 WriteF(fp, nn, leaf);
end function Leapfrog

3.6. Quadrupling

This operation adds a new cycle inside of each cycle/face and connects the two

cycles vertex by vertex. Next, the old edges are deleted. The transformation preserves the

initial orientation of all parent faces in the map as well as the initial vertices (Figure 6).

Q(M)M
Figure 6: Quadrupling operation

function Quadrupling (a, n, c, fp, tipa, texti)
// in: a, n, c, fp, tipa, texti
// purpose: adds a new cycle inside of each cycle/face and connects the
// two cycles vertex by vertex.
// The transformation preserves the initial orientation of all
// parent faces. The initial vertices are preserved while the
// old edges are removed.
 // .hin file header
 // newLine is the line terminator.
 textq := "Quadrupling " + newLine + "forcefield mm+" + newLine +
 "sys 0" + texti + "mol 1" + newLine;
 print fp, textq;
 IniQ(a,n,tipa, qa); // Puts in qa the initial vertices without edges.
 AdCycleInt(a,n,c,tipa,qa,no);
 // Writes the strings from qa in the output file.
 WriteF(fp, no, qa);
end function Quadrupling

3.7. Capra

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 330

This transformation puts two new points on each edge of the map. Next, puts a

new cycle of the same folding in the center of each face and makes (1, 4) connections to

the boundary points, starting with a new vertex9,10.

E2(M) Ca(M)

Figure 5: Leapfrog operation
function Capra(a, n, c, m, fp, tipa, texti, p12)
// in: a, n, c, m, fp, tipa, texti, p12
// purpose: puts two new points on each edge of the map.
// Puts a new cycle of the same size in the center of each face
// and makes (1,4) connections to the boundary points,
// starting with a new vertex.
 // .hin file header
 // newLine is the line terminator.
 textc := "Capra " + newLine + "forcefield mm+" + newLine +
 "sys 0" + texti + "mol 1" + newLine;
 print fp, textc;
 Nrc(c, n, nci);
 IniQ(a,n,tipa,cip); // Puts in the final array cip the initial
 nn := n; // vertices without edges.
 for i := 1 to n // Initialization
 for j := 1 to m[i,0]
 m[i,j,7] := ""; // for vertices related to the edges
 endfor j
 for j := 1 to c[i,0] // and for vertices related to the cycles.
 nv := c[i,j,0];
 c[i,j,nv+2] := "";
 endfor j
 endfor i
 for i := 1 to n
 for j := 1 to m[i,0]
 Ad_Pi(cip,m,i,j,nn,tipa,a); // Adds two new linked vertices on
 endfor j // every old edge.
 endfor i
 nc := 0;
 do while nc < nci // do while exists a cycle not visited
 for ix := 1 to n
 for jx := 1 to c[ix,0]
 i := ix; j := jx;
 if (nc = 0) or (AlreadyVisited(c,i,j,m)) then
 // if it is the first cycle or the current cycle shares an edge
 // with an already visited cycle
 nc := nc + 1;
 v := c[i,j,0];

Nanostructures - Novel Architecture

 331

 // Adds a vertex in the face center; it will be deleted later.
 Center_D(i,j,nn,a,tipa,x,y,z,c,c3);
 c[i,j,0] := v;
 // Adds a rotated new cycle in the middle of the old cycle.
 Ad_P_Middle(cip,m,i,j,nn,c,x,y,z,a,tipa,c2);
 // Adds the links between the new cycle and the vertices
 // added on the old edges.
 AdLeg_C(cip,m,i,j,nn,c,c2,n,p12);
 endif
 endfor jx
 endfor ix
 loop
 // Writes the strings from cip in the output file.
 WriteF(fp, no, cip);
end function Capra

M. Ştefu, D. Butyka, M. V. Diudea, L. Jäntschi and B. Pârv

 332

4. Conclusions

Based on the Graph Theory, a self-consistent software program was developed. Its
user interface lists all the faces of an input map/polyhedron, and allows the user to select
the above-described map operations in order to obtain transformed maps. The program
was tested on objects having up to thousands points, both closed and open.

References

1. B. Grünbaum and G. C. Shephard, Tilings and Patterns, Freeman, New York,

1985.

2. D. J. Klein and H. Zhu, in: A. T. Balaban, (Ed.), From Chemical Topology to Three

- Dimensional Geometry, Plenum Press, New York, 1997, pp. 297-341.

3. B. de La Vaissière, P. W. Fowler, and M. Deza, J. Chem. Inf. Comput. Sci., 2001,

41, 376-386.

4. M. Deza, P. W. Fowler, M. Shtorgin, and K. Vietze, Codes in Platonic,

Archimedean, Catalan, and Related Polyhedra: A Model for Maximum Addition

Patterns in Chemical Cages, J. Chem. Inf. Comput. Sci., 2000, 40, 1325-1332.

5. T. Pisanski, and M. Randić, in Geometry at Work, M. A. A. Notes, 2000, 53, 174-

194.

6. P. W. Fowler and T. Pisanski, J. Chem. Soc. Faraday Trans. 1994, 90, 2865-2871.

7. F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969.

8. Diudea, M. V.; John, P. E.; Graovac,A.; Primorac, M.; Pisanski, T. Leapfrog and

Related Operations on Toroidal Fullerenes. Croat. Chem. Acta, 2003, 76, 153-159.

9. M. V. Diudea, Covering Nanostructures, in: M. V. Diudea, Ed., Nanostructures-

Novel Architecture, NOVA, New York, 2004 (in press).

10. M. V. Diudea, Studia Univ.“Babes-Bolyai”, 2003, 48 (2), 3-16.

